Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Sheng Liu, Feng-Bo Xu,* Jun-Wen Wang, Qing-Shan Li, Hai-Bin Song and Zheng-Zhi Zhang

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail: xfbo@eyou.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.06 \AA$
Disorder in solvent or counterion
R factor $=0.065$
$w R$ factor $=0.219$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
9,10-Bis[3-(2-pyridylmethyl)imidazolium-1-ylmethyl]anthracene bis(hexafluorophosphate)

In the title centrosymmetric compound, $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-}$, the planes through the pyridine and anthracene ring systems form dihedral angles of 78.8 (1) and 73.5 (1) ${ }^{\circ}$, respectively, with the imidazole ring. The crystal packing is stabilized by $\pi-$ π stacking interactions between the anthracene ring system and pyridine rings of adjacent molecules, and also by C $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Since the discovery of stable N-heterocyclic carbenes (NHC), numerous flexible or rigid N -heterocyclic carbene precursors have been synthesized and studied because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Bourissou et al., 2000; Herrmann \& Kocher, 1997; Herrmann, 2002). In addition, the photophysical properties of these complexes have also been reported by our group (Liu et al., 2003, 2004). As a continuation of our systematic studies of the various N -heterocyclic carbene ligands and the photophysical properties of their metal complexes, a new biscarbene precursor with a fluorescent anthracene group and a pyridyl ring, the title compound, (I), has been synthesized and its crystal structure is reported here.

The cation of (I) lies across a crystallographic inversion centre; the asymmetric unit therefore contains one-half of the cation and a $\mathrm{PF}_{6}{ }^{-}$anion (Fig. 1). The planes through the pyridine and anthracene ring systems form dihedral angles of 78.8 (1) and $73.5(1)^{\circ}$, respectively, with the imidazole ring plane.

As shown in Fig. 2, $\pi-\pi$ stacking interactions are observed between the anthracene ring system and the pyridine rings of two adjacent molecules, which are almost parallel [dihedral angle $\left.=5.3(2)^{\circ}\right]$, with a centroid-centroid separation of

Received 5 July 2005 Accepted 20 July 2005 Online 17 August 2005

Figure 1
The cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with the suffix A are generated by the symmetry operation $(1-x, 1-y, 1-z)$. H atoms have been omitted for clarity.
3.701 (3) A. In addition, the crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

9,10-Bis(chloromethy1)anthracene $\quad(2.572 \mathrm{~g}, \quad 0.01 \mathrm{~mol})$ and $2-$ (imidazolylmethyl)pyridine $(3.343 \mathrm{~g}, 0.021 \mathrm{~mol})$ were mixed and stirred at 368 K in 1,4-dioxane $(160 \mathrm{ml})$ for 48 h . The precipitate that formed was collected by filtration. The solid was dissolved in methanol and an aqueous solution of ammonium hexafluorophosphate $(3.423 \mathrm{~g}, 0.021 \mathrm{mmol})$ was added. The precipitate that formed was collected by filtration and recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ and diethyl ether $(1: 6, v / v)$ to give the title compound (yield 92%). Analysis found: C 50.19, H 3.72, N 10.33%; calculated for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{P}_{2}$: C 50.26, H 3.72, N, 10.34\%. ${ }^{1} \mathrm{H}$ NMR (400 M , DMSO- d_{6}): $\delta 9.17(s, 2 \mathrm{H})$, $8.62(d, 4 \mathrm{H}), 8.46(d, 2 \mathrm{H}), 7.83(t, 2 \mathrm{H}), 7.77(d, 4 \mathrm{H}), 7.73(s, 2 \mathrm{H}), 7.59$ $(s, 2 \mathrm{H}), 7.37(t, 4 \mathrm{H}), 6.62(s, 4 \mathrm{H}), 5.46(\mathrm{~s}, 4 \mathrm{H})$.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{6}{ }^{2+} .2 \mathrm{PF}_{6}{ }^{-}$	$Z=1$
$M_{r}=812.58$	$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.2564$ (15) \AA	Cell parameters from 1905
$b=9.7534$ (15) ${ }_{\text {A }}$	reflections
$c=11.4425$ (18) \AA	$\theta=2.3-25.0^{\circ}$
$\alpha=65.621$ (2) ${ }^{\circ}$	$\mu=0.22 \mathrm{~mm}^{-1}$
$\beta=75.971$ (3) ${ }^{\circ}$	$T=294$ (2) K
$\gamma=76.993$ (2) ${ }^{\circ}$	Block, yellow
$V=903.7$ (2) \AA^{3}	$0.32 \times 0.22 \times 0.20 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans	3594 independent reflections 2248 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$
Absorption correction: multi-scan	$\theta_{\text {max }}=26.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-10 \rightarrow 11$
$T_{\text {min }}=0.934, T_{\text {max }}=0.958$	$k=-12 \rightarrow 11$
5051 measured reflections	$l=-14 \rightarrow 7$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1121 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$	+ 0.4256P]
$w R\left(F^{2}\right)=0.219$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.03$	$(\Delta / \sigma)_{\text {max }}=0.001$
3594 reflections	$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{\text {A }}{ }^{-3}$
299 parameters	$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{\text {A }}{ }^{-3}$
H -atom parameters constrained	

Figure 2
Molecular packing diagram, showing the intermolecular hydrogenbonding and $\pi-\pi$ stacking interactions.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.93	2.42	$3.233(5)$	146

Symmetry codes: (i) $-x,-y+1,-z+1$.

The hexafluorophosphate group is disordered over two different orientations, with occupancies of 0.589 (12) and 0.411 (12). The $\mathrm{P}-\mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ distances were restrained to $1.56(1)$ and $2.21(1) \AA$, respectively. The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene), and included in the final cycles of refinement using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20472036).

References

Bourissou, D., Guerret, O., Gabbai, F. P. \& Bertrand, G. (2000). Chem. Rev. 100, 39-91.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Herrmann, W. A. \& Kocher,C. (1997). Angew. Chem. Int. Ed. Engl. 36, 21622187.

Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
Liu, Q. X., Xu, F. B., Li, Q. S., Leng, X. B., Chou, Y. L. \& Zhang, Z. Z. (2003). Organometallics, 22, 309-314.
Liu, Q. X., Xu, F. B., Li, Q. S., Song, H. B. \& Zhang, Z. Z. (2004). Organometallics, 23, 610-614.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

